Consequences of Sheep Blood Used as Diluting Agent for the Magnetoviscous Effect in Biocompatible Ferrofluids
نویسندگان
چکیده
Magnetic nanoparticles suspended in suitable carrier liquids can be adopted for use in biomedicine. For this to be achieved, the biocompatibility of these ferrofluids needs to be ascertained. In cancer treatment, potential applications currently under investigation include, e. g. drug targeting by using magnetic fields and the destruction of diseased cells by applying alternating magnetic fields, which cause heating of magnetic nanoparticles. To enable the use of ferrofluids in the actual biomedical context, detailed knowledge of the flow characteristics is essential to ensure safe treatment. From ferrofluids used in the engineering context, a rise of viscosity when a magnetic field is applied – the magnetoviscous effect – is well known. This effect, which leads to an increased viscosity and profound alteration of a fluid’s rheological behavior, has also been demonstrated for biocompatible ferrofluids used in the aforementioned applications. In biomedical applications, ferrofluids will be diluted in the blood stream. Therefore, the interaction between whole blood and the ferrofluid has to be investigated. This is the focus of the current experimental study, which makes use of two different ferrofluids diluted in sheep blood to gain a deeper understanding of the fluid mixtures primarily regarding the relative change in viscosity if an external magnetic field is applied. The results demonstrate a strong interaction between blood cells and structures formed by the magnetic nanoparticles and show a high deviation of results compared to ferrofluids diluted in water. These findings have to be taken into account for future research and applications of similar biocompatible fluids to guarantee safe and effective use in living organisms.
منابع مشابه
A short review on Ferrofluids surface modification by natural and biocompatible polymers
This paper provides an overview of how the surface properties of ferromagnetic nanoparticles dispersed in fluids is modified by natural and biocompatible polymers. Among common magnetic nanoparticles, magnetite (Fe3O4) and maghemite (g-Fe203) are popular candidates because of their biocompatibility. Natural polymeric coating materials are the most commonly used biocompatible magnetic nanopartic...
متن کاملHydrothermal Synthesis of an Ethiodol Based Ferrofluid as a Potential MRI Contrast Agent
In the present work, stable ferrofluids containing oleic acid capped magnetite nanoparticles were synthesized via low temperature hydrothermal method. The physical and chemical properties of the synthesized particles were studied using TEM, XRD, AFM, VSM and PCS techniques. Mean particles size of the samples was between 4.5 and 10 nanometers, depending on experimental conditions. Effect ...
متن کاملContinuous-flow and Label-free Ferrohydrodynamic Sorting of Mammalian Cells in Biocompatible Ferrofluids
This paper reports a new continuous-flow and label-free sorting scheme based on biocompatible ferrofluid hydrodynamics (ferrohydrodynamics) for the separation of mammalian cells (HeLa cells and mouse whole blood). Ferrofluids are stable magnetic nanoparticles suspensions used as sorting media in microfluidics for both particles and cells. Here we develop a biocompatible ferrofluid that can sust...
متن کاملEffect of Supplementing Common Reed (Phragmites australis) with Urea on Intake, Apparent Digestibility and Blood Metabolites of Baluchi Sheep
To evaluate the effects of treating or supplementing common reed (Phragmites australis) with 2% urea on intake, nutrient apparent digestibility, and blood metabolites, fifteen Baluchi rams (35.4±2.3 kg body weight) were used in a completely randomized design. Treatments were as follows: 1) common reed, 2) common reed supplemented with 2% urea solution at feeding, and 3) common reed tre...
متن کاملNonequilibrium Dynamics and Magnetoviscosity of Moderately Concentrated Magnetic Liquids: A dynamic Mean-field Study
A mean-field Fokker-Planck equation approach to the dynamics of ferrofluids in the presence of a magnetic field and velocity gradients is proposed that incorporates magnetic dipole-dipole interactions of the colloidal particles. The model allows to study the combined effect of a magnetic field and dipolar interactions on the viscosity of the ferrofluid. It is found that dipolar interactions lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015